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Thesis period: von 13.12.2021 bis 13.06.2022



i

Abstract

In this thesis I identify spatio-temporal patterns of European heat waves be-
tween 1979 and 2020, cluster them into meaningful families and analyze their
influence on vegetation. For this I introduce a novel definition of heat waves,
which defines them as phenomena with a spatial and temporal extend. With
two clustering algorithms I cluster the detected heat waves temporally by their
occurence during the year and spatially by their spatial overlapping. After the
detection of these spatio-temporal heat wave clusters I correlate di↵erent heat
wave features with normalized di↵erenced vegetation index data anomalies to
assess the influence of heat waves on vegetation in di↵erent regions in Europe
and during di↵erent seasons of the year. The results reveal interesting insights
into the spatio-temporal distribution of heat waves over Europe and suggest
an approach on how to detect influences of heat waves on vegetation.
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Zusammenfassung

In dieser Arbeit identifiziere ich räumlich-zeitliche Muster europäischer
Hitzewellen zwischen 1979 und 2020, gruppiere sie in aussagekräftige Fami-
lien und analysiere ihren Einfluss auf Vegetation. Dazu habe ich eine neue
Definition für Hitzewellen entwickelt, die diese als Phänomene mit einer
räumlichen und zeitlichen Ausdehnung definiert. Mit zwei aufeinanderfolgen-
den Clustering-Algorithmen gruppiere ich die detektierten Hitzewellen zeitlich
nach ihrem Auftreten im Jahresverlauf und räumlich nach ihrer räumlichen
Überlappung. Nach der Erkennung dieser räumlich-zeitlichen Hitzewellenclus-
ter korreliere ich verschiedene Hitzewellenmaße mit Anomalien eines Daten-
satz des normalisierten di↵erenzierten Vegetationsindex, um den Einfluss
von Hitzewellen auf die Vegetation in verschiedenen Regionen Europas und
während verschiedener Jahreszeiten zu bewerten. Die Arbeit gibt interessante
Einblicke in die räumlich-zeitliche Verteilung von Hitzewellen über Europa und
schlägt einen Ansatz vor, wie man Einflüsse von Hitzewellen auf die Vegetation
bestimmen kann.
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iv



Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Climatic and Computational Background 3

2.1 Climatic Background . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Heat Wave Definition and Measurements . . . . . . . . . 3

2.1.2 Physical Causes of Heat Waves in Europe . . . . . . . . 4

2.1.3 Heat Waves and Vegetation . . . . . . . . . . . . . . . . 5

2.2 Computational Background . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Deep Graphs Framework . . . . . . . . . . . . . . . . . . 6

2.2.2 K-means Clustering . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 UPGMA Clustering . . . . . . . . . . . . . . . . . . . . . 7

2.2.4 Spearman’s Rank Correlation Coe�cient . . . . . . . . . 7

2.2.5 Mann-Kendall Trend Test . . . . . . . . . . . . . . . . . 8

3 Data and Methods 9

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Temperature Data . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Normalized Di↵erence Vegetation Index (NDVI) Data . . 9

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Definition of Heat Waves . . . . . . . . . . . . . . . . . . 10

v



vi CONTENTS

3.2.2 Spatial and Temporal Clustering of Heatwaves . . . . . . 11

3.2.3 Vegetation Correlation Analysis . . . . . . . . . . . . . . 12

4 Results 15

4.1 Heat Wave Detection . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Heat Wave Clustering . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 UPGMA Clustering . . . . . . . . . . . . . . . . . . . . . 20

4.3 Vegetation Correlation Analysis . . . . . . . . . . . . . . . . . . 26

4.3.1 Mean Heat Wave Correlation Analysis . . . . . . . . . . 26

4.3.2 Individual Heat Wave Correlation Analysis . . . . . . . . 27

5 Discussion and Outlook 33

5.1 Definition and Identification of Heat Waves . . . . . . . . . . . . 33

5.2 Spatio-Temporal Heat Wave Clusters . . . . . . . . . . . . . . . 34

5.3 Influence of Heat Waves on Vegetation . . . . . . . . . . . . . . 35

5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

A Further Tables and Figures 37

Bibliography 43



List of Figures

3.1 3D representation of a heat wave . . . . . . . . . . . . . . . . . 11

4.1 Summer heat waves . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 General statistics of the identified heat waves . . . . . . . . . . 18

4.3 Day of year distribution of heat wave families . . . . . . . . . . 20

4.4 Spatial heat wave clusters of family 0 . . . . . . . . . . . . . . . 22

4.5 Spatial heat wave clusters of family 1 . . . . . . . . . . . . . . . 23

4.6 Spatial heat wave clusters of family 2 . . . . . . . . . . . . . . . 24

4.7 Spatial heat wave clusters of family 3 . . . . . . . . . . . . . . . 25

4.8 Boxpots of correlation coe�cients (NHWE) . . . . . . . . . . . 28

4.9 Boxpots of correlation coe�cients (HWMId) . . . . . . . . . . . 29

4.10 Highest individual correlating heat waves of family 0 . . . . . . 30

4.11 Highest individual correlating heat waves of family 1 . . . . . . 31

4.12 Highest individual correlating heat waves of family 2 . . . . . . 32

4.13 Highest individual correlating heat waves of family 3 . . . . . . 32

A.1 Spatial distribution of the four heat wave families after K-means

clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2 Ocean and Greenland clusters of heat wave family 0 after UP-

GMA clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.3 Ocean and Greenland clusters of heat wave family 1 after UP-

GMA clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.4 Ocean and Greenland clusters of heat wave family 2 after UP-

GMA clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



viii LIST OF FIGURES

A.5 Ocean and Greenland clusters of heat wave family 3 after UP-

GMA clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Tables

4.1 Characteristics of the five largest heat waves . . . . . . . . . . . 17

4.2 Characteristics of heat wave families . . . . . . . . . . . . . . . 19

4.3 Summary of UPGMA clustering . . . . . . . . . . . . . . . . . . 21

4.4 Spearman’s rank correlation coe�cients of heat wave family 1 . 26

4.5 Spearman’s rank correlation coe�cients of heat wave family 2 . 26

ix



x LIST OF TABLES



Chapter 1

Introduction

Extreme heat events pose a multifaceted threat to humans, ecosystems and
the earth in general. During the European heat wave in 2003 the mortal-
ity in France increased by 54 percent and the alpine glacier loss due to this
heat wave was estimated at 5 to 10 percent [Fischer et al., 2007]. The Rus-
sian heat wave in 2010 caused a crop deficit of approximately 25 percent
[Barriopedro et al., 2011] and the 2018 heat wave over Scandinavia and north-
ern Europe was the main driver for several forest fires that caused severe
damage to vegetation and animals [Yiou et al., 2020].

Driven by antrophogenic climate change, extreme heat events have become
more frequent and intense during the last decades [Robinson et al., 2021,
Chapman et al., 2019, IPCC, 2021]. Dosio et al. show that even with only
1.5°C global warming the magnitude and frequency of extreme heat events
will increase in most regions of the earth, with 2°C global warming this fre-
quency is likely to double compared to 1.5°C warming [Dosio et al., 2018].

To date it has been di�cult to predict the occurrence of heat waves longer
than two weeks in adavance. This is due to the various atmospheric and
physical drivers and accelerators of extreme heat events. The ability to predict
heat waves would allow governments to take preventive measures in order to
decrease mortality, crop loss and to prevent ecosystem damages during heat
waves [Lavaysse et al., 2019]. The IPCC defines a heat wave as a period of
abnormally hot weather [IPCC, 2021]. Besides that, there is currently no
more precise general definition of heat waves. This causes inconsistencies in
research results, as often results are not comparable with each other when
di↵erent definitions of heat waves are applied.

In this work I define and identify European heat waves over the last 40 years
and use two clustering algorithms to identify meaningful spatio-temporal heat
wave clusters. In a second step, I assess the influence of these heat wave
clusters on vegetation. The identification and analysis of the heat waves is
conducted with a promising new graph framework, DeepGraphs, developed by
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2 CHAPTER 1. INTRODUCTION

Dominik Traxl [Traxl et al., 2016a].

This thesis is structured as follows: In chapter 2 an overview of the
current research of Eupean heatwaves, their influence on vegetation and
their physical drivers is provided. In chapter 3 the Deep Graphs framework,
which is used to analyze Euopean heatwaves is presented, followed by a
comprehensive description of the data used. The results are given in chap-
ter 4. A discussion of the results and a short outlook conclude this thesis.



Chapter 2

Climatic and Computational
Background

2.1 Climatic Background

2.1.1 Heat Wave Definition and Measurements

Up to date several di↵erent indices are used to define and detect heat waves
and therefore make it impossible to compare results between di↵erent stud-
ies. The measure by which heat waves are defined di↵ers, often depend-
ing on the underlying research questions. Common measures are maxi-
mum temperature, mean temperature and minimum nighttime temperature.
Many developed heat wave indices are not applicable for all climates and
seasons, as they are based on absolute temperatures or they only consider
one characteristic of a heat wave and therefore can not represent the entire
scope of the heat wave [Perkins and Alexander, 2013]. Newer approaches to-
wards an unified definition of heat waves use percentile-based daily thresholds
[Russo et al., 2014, Zschenderlein et al., 2019]. This makes it possible to de-
tect heat waves in winter season and in colder regions as well.
Many definitions of heat waves are made at the grid cell level and
therefore are not able to take the spatial extend of a heat wave into
account [Sutanto et al., 2020]. Other approaches define geographical re-
gions beforehand and then analyze heat waves within these clusters
[Perkins-Kirkpatrick and Lewis, 2020, Zschenderlein et al., 2019]. Lo et al.
published an approach in which heat waves are not defined at the grid cell
level, but are considered as events with spatial extents that span multiple grid
points. They define a heat wave magnitude scale that includes the tempo-
ral extend by taking the first and the last day of a heat wave and the spa-
tial boundaries as the longitudes and latitudes of the most outwards voxels
[Lo et al., 2021].

3



4 CHAPTER 2. CLIMATIC AND COMPUTATIONAL BACKGROUND

Russo et al. proposed a heat wave magnitude index (HWMI) in 2014
[Russo et al., 2014] and published an improved version, the heat wave mag-
nitude index daily (HWMId) in 2015, which makes it possible to measure the
magnitude of heat waves at di↵erent locations and compare them with each
other [Russo et al., 2015]. This index takes into account the spatial and tem-
poral size of the heat wave as well as the intensity of the extreme heat during
the heat wave and combines these aspects to define the magnitude of a heat
wave. The magnitude of a heat wave day d is defined as followed, where Td is
the temperature at day d, T40y25p and T40y75p are the 25th and 75th percentile
of the full 40 year temperature datset, respectively.

Md(Td) =

(
Td�T40y25p

T40y75p�T40y25p
, if Td > T40y25p

0, if Td  T40y25p

(2.1)

The magnitude of a heat wave is the sum of all magnitudes of the days belong-
ing to the heat wave. This measure takes into account the temporal extend as
well as the extremity of the temperature of the heat wave [Russo et al., 2015].
However with this definition of the heat wave magnitude, winter heat waves
will most likely all have magnitudes of zero, which might not be reflecting the
real impact they have on ecosystems and earth processes.

2.1.2 Physical Causes of Heat Waves in Europe

The increase in the frequency of heat events occuring over Europe can par-
tially be explained by the mean temperature increase over the last decades,
caused by greenhous gas emission. However, several extreme heat events
that occured in the last decades can not solely be explained by this phe-
nomenon. Mega heat waves such as the 2003, 2010 and 2018 heat waves, are
caused by atmospheric regimes. Heat waves over Europe are closely associated
with atmospheric blocking events, stationary fields of extremely high pressure
[Schaller et al., 2018]. Blocking events hinder the westerly wind flow and there-
fore cause a weather regime to stay at one location for an unusually long time.
Since blocking events are also associated with a cloudless sky, the blocks are
often accompanied by precipiation deficits. Pfahl and Wernli show that up to
80 percent of the summer heatwaves over northern Euope can be traced back
to a co-located blocking event [Pfahl and Wernli, 2012, Brunner et al., 2017].

However, a blocking event alone might not be able to cause extreme events like
the heat waves in 2003, 2010 and 2018. For an event of such length and mag-
nitude, land-atmospheric feedback is of great importance [Durre et al., 2000].
When soil moisture is low, the incoming radiation of the sun is mainly re-
leased as sensible heat instead of latent heat, causing the surrounding air to
heat up. Land-atmospheric feedback alone can not cause a heat wave, but it
is the driving force to influence length and intensity of an extreme heat event
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[Miralles et al., 2019]. For the record breaking European heat wave of 2003 it
has been shown that land-atmospheric feedback has had a great influence on
the magnitude of the heat wave [Fischer et al., 2007].

The influence of large-scale teleconnections, like the North Atlantic Oscilla-
tion, on heat waves over Europe has been an ongoing field of research over
the last couple of years, especially because understanding how large-scale tele-
connections influence extreme heat events would improve the forecasting of
such events tremendously [Pezza et al., 2012]. The weather over Europe is
greatly influenced by North Atlantic anomalies. Atmospheric blocking events
over Europe have been shown to be associated with positive phases of the
North Atlantic Oscillation (NAO+) and low pressures systems over the north
atlantic can cause heat waves over Europe [Cassou et al., 2005]. Other causes
for blocking patterns over Europe are quasi-stationary Rossby waves and the
formation of a double Jet pattern [Kornhuber et al., 2017].

In trecent years, drivers and causes of heat waves have been studied extensively,
revealing new insights on a constant basis. However, it has not yet been
revealed which cause or driver of heatwaves contributes to which attribute of
a heat wave and to what extend a heat wave is influenced by one driver.

2.1.3 Heat Waves and Vegetation

Temperature is one of the main drivers a↵ecting plant growth and therefore
vegetation in general. Higher temperatures, which often go hand in hand with
increased solar radiation, are primarily beneficial for plant growth, as the rate
of photosynthesis is enhanced. Rising mean temperatures in the last decades
have caused prolonged growing seasons in mitladitudial zones. In addition to
the greening e↵ect that rising temperatures bring, extreme heat causes stress in
plants, leading to changes in metabolism and the formation of reactive oxygen
species [Baumbach et al., 2017]. A physiological process occuring in all green
plants is photosynthesis. Within this process, photosystem II is especially
heat sensitive and its activity is reduced when the plant is exposed to extreme
heat [Hasanuzzaman et al., 2013]. Baumbach et al. have shown that whether
vegetation does benefit from heat or whether it does not, depends largely on
the type of vegetation and the stage of plant development at the time of the
extreme heat events. In early spring high temperatures often seem to have a
beneficial e↵ect on plant growth. Later in the year, up until september, some
vegetation types, especially cropland and grassland, show negative reactions
to extremely high temperatures [Baumbach et al., 2017].

Besides temperature, soil moisture and water deficits are main drivers of plant
growth [Liu et al., 2013]. The intensity of extreme heat events is often ampli-
fied by soil moisture deficits and as heat waves over Europe are mainly caused
by atmospheric blocking events they often occur together with precipitation
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deficits [Durre et al., 2000]. Therefore it has been suggested that a mean tem-
perature increase is beneficial for plant growth but extreme heat events to-
gether with water scarcity causes damage to vegetation [Liu et al., 2013].

2.2 Computational Background

All of the below described algorithms, frameworks and statistical methods were
used throughout the data-analysis of this thesis. The theoretical background
of all methods used is described in this section.

2.2.1 Deep Graphs Framework

Deep Graphs is a novel graphs framework developed for analyzing large
amounts of heterogenous data. A graph (G) consists of nodes (V) and edges
(E) (see equation 2.2).

G = (V,E) (2.2)

Nodes represent objects, which can contain several features and any edge be-
tween two nodes Vi and Vj represents the existence of a relation between these
two nodes. The relation can be of any type and does not neccessarily need to be
represented by a number. Again, a relation between two nodes can have several
features such as a strength or a boolean value. With the extensive Python mod-
ule deepgraphs, graphs can be easily filtered and partitioned, allowing to find
potentially interesting intersection partitions of a graph [Traxl et al., 2016a].
For my analysis, nodes represent extreme heat days at one grid cell. They
contain features such as a temperature, an integer-based location and time,
a magnitude and latitude and longitude coordinates. Neighboring nodes are
connected by edges and all nodes connected by edges are represented by a su-
pernode which is a heat wave in this context. A supernode again has features
like a HWMId value, day of year mean and longitude and latitude means.
Those features are calculated from the features of the nodes belonging to a
supernode.

The Deep Graphs framework has been applied to rainfall data to analyze
spatio-temporal patterns and to determine the size distribution of rainfall clus-
ters [Traxl et al., 2016a, Traxl et al., 2016b]. In 2021 the methodology has
been applied to fire data to analyze spatio-temporal patterns of wildfires in
amazonian forests [Cano-Crespo et al., 2021].
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2.2.2 K-means Clustering

K-means clustering is based on Lloyd’s algorithm and is an unsupervised par-
titioning clustering algorithm. Its goal is to assign every datapoint to the
cluster where the cluster variance is kept minimal. As this problem is NP-
hard, the algorithm follows a heuristic approach and initially sets the cluster
medeoids randomly. The number of clusters K needs to be pre-given. After
initialization the algorithm has two phases. The datapoints are assigned to
clusters and afterwards the medoids of the clusters are recalculated. Based
on the recalculated medoids, some datapoints might be assigned to di↵erent
clusters in the next iteration of the algorithm. These two phases are repeated
until the clusters do not change anymore [Lloyd, 1982]. The algorithm is very
fast and therefore suited for large datasizes, but has some disadvantages. As
the algorithm follows a heuristic approach its outcome is not neccessarily the
optimal solution, but highly depends on the location and number of cluster
medoids [Arora et al., 2016].

2.2.3 UPGMA Clustering

UPGMA stands for unweight pair group method with arithmetic mean and is
a hierarchial agglomerative clustering method. The algorithm starts with all
datapoints apart and consecutively merges the two objects with the smallest
distance to each other into the same cluster. The distance between two dat-
apoints or clusters is defined in a distance matrix which is updated in every
iteration of the algorithm. In the end, a rooted dendrogram is built and the
user can decide where to set the cut within the dendrogram revealing cluster
memberships of the data points [Sukal and Miechener, 1958]. Since the prob-
lem of finding the optimal dendrogram for a set of datapoints is NP-hard,
the algorithm follows a heuristic approach. Once connections between data
points and clusters have been drawn, they cannot be undone later, even if the
connections turn out to be less favorable than before [Omran et al., 2007].

2.2.4 Spearman’s Rank Correlation Coe�cient

The Spearman’s rank correlation coe�cient is a non-parametric rank coef-
ficient. It is derived from the Pearson correlation coe�cient, but has the
advantages that it neither assumes that the underlying data is normally dis-
tributed nor that the relationship between two variables is neccessarily linear
[Xiao et al., 2010]. Before calculating the correlation coe�cient, the samples
are converted into ranks, between which the correlation is then calculated. As
for the Pearson’s correlation coe�cient, values of the Spearman correlation
coe�cient lie between -1 and +1, where 0 implies that there is no correlation
existing between two datasets and -1 and +1 imply perfect anticorrelation
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and correlation respectively. The Spearman’s rank correlation coe�cient is
calculated as follows, where R(X) and R(Y) are the ranks of the samples
[Spearman and Spearman, 1904]:

rs =
cov(R(X), R(Y ))

�R(X)�R(Y )
(2.3)

2.2.5 Mann-Kendall Trend Test

The Mann-Kendall trend test tests statistically, whether a variable shows a
monotonic upward or downward trend over time. One di↵erence compared to
linear regression is that the monotonic trend of a variable does not necessarily
have to be linear. The initial assumption of the Mann-Kendall trend test, H0

is, that there is no monotonic trend [Mann, 1945].



Chapter 3

Data and Methods

3.1 Data

During this thesis two datasets, temperature data and normalized di↵erence
vegetation index (NDVI) data, were used. Both datasets are introduced and
described in the following section.

3.1.1 Temperature Data

Gridded Era5 reanalysis 2m-land-temperature data was downloaded from the
Copernicus climate data store and used for the analysis [Hersbach et al., 2018].
Hourly data between 12 pm and 5 pm of the years 1979-2020 were retrieved
and daily maximum temperatures were computed. The spatial resolution of
the data is 0.25°x0.25° in a gridded coordinate system. The margins of the
assessed region are 75°N/25°S and -50°W/44°E. The temperature values were
converted from kelvin to degrees celcius by subtracting 273.15 from every value.
For simplicity, the 366th day was removed from each leap year.

3.1.2 Normalized Di↵erence Vegetation Index (NDVI)
Data

The normalized di↵erence vegetation index is calculated from the near-infrared
and red light reflection ratio (see equation 3.1).

NDV I =
(NIR�RED)

(NIR +RED)
(3.1)

where NIR and RED stand for the amounts of near-infrared and red light,
respectively, that are reflected from vegetation and captured by the sattelite.
The equation is based on the phenomenum that clorophyll absorbs red light

9
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and mesophyll scatters near-infrared light. Chlorophyll is a green pigment that
gives plant leafs its green color and takes part in photosynthesis. Mesophyll
is part of the leaf structure of plants. The NDVI can have values between -1
and 1. Negative values imply the absence of green vegetation. The higher the
NDVI value is, the greener is the vegetation at a location. Photosynthesis is
the main metabolic pathway through which plants gain energy. The NDVI can
therefore be used as an indicator of plant productivity [Pettorelli et al., 2005].

The GIMMS NDVI3g dataset was downladed from the IRI/LDEO Cli-
mate Data Library. The data is retrieved from Advanced very high reso-
lution ratiometer (AVHRR) instruments run by the US-American national
oceanic and atmospheric administration (NOAA) [Pinzon and Tucker, 2014,
Pinzon and Tucker, 2016]. The dataset contains biweekly datapoints with a
0.083°x0.083° resolution and spans a period from July 1981 to December 2015.
For the analysis, the data was downsampled to a 0.25°x0.25° resolution by
calculating the mean value. Monthly anomalies of the NDVI values were com-
puted.

3.2 Methods

The python code for the complete methodology used in this thesis is openly ac-
cessible in the following Github repository: https://github.com/JuHe0311/
Heatwaves.git

The following section describes the three methodological parts of the analysis
of my Master’s thesis. First I explain my definition of a heat wave and how
they are detected. Secondly the clustering of the heat waves into families and
clusters is described and finally, the process of vegetation correlation analysis
is explained.

3.2.1 Definition of Heat Waves

To detect extreme heat days, a location site specific daily threshold was calcu-
lated according to Russo et al. For this purpose, the 95th percentile of a window
of 31 days around the day of interest was calculated for all years within the
dataset according to equation 3.2, where Ad,g is the threshold at day d and
grid cell g and Ty,i,g is the maximum temperature in year y, at day i and grid
cell g. If the maximum temperature on any day at a grid cell exceeds its daily
threshold, it is considered to be an extreme heat event. When viewed in a
3D coordinate system with longitude, latitude and time as the axes, each of
these extreme events can have up to 26 nearest neighbors, eight within the
same time (t) dimension and nine each in t-1 and t+1 (see figure 3.1). A heat
wave is defined as all nearest neigbors in this space-time coordinate system.
As I was interested in heat waves rather than small local and short-term heat

https://github.com/JuHe0311/Heatwaves.git
https://github.com/JuHe0311/Heatwaves.git
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events, I defined temporal and spatial thresholds: An event needs to last for
at least three consecutive days and cover at least 100 unique grid cells to be
considered a heat wave.

Ad,g = [2020
y=1979 [d+15

i=d�15 Ty,i,g (3.2)

Figure 3.1: 3D representation of a heat wave. An example of a heat
wave in a 3D coordinate system is given. Extreme heat events are represented
as cubes and a heat wave is the union of all nearest neighbors of the extreme
heat events. The three dimensions are the longitude, latitude and time of an
extreme heat event.

3.2.2 Spatial and Temporal Clustering of Heatwaves

To cluster the heat waves spatially and temporally, two subsequent clusterings
were applied. Spatio-temporal clustering was not possible in one clustering
step as for both measures two di↵erent approaches were chosen. Temporal
clustering was perfomed based on one feature of a heat wave and spatial clus-
tering is based on the distances between each pair of heat waves. These two
measures could not be combined in an easy way, therefore the choice was made
to split the clustering into two separate steps. First the heat waves were clus-
tered temporally with the K-means algorithm. For this the mean day of year
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(doy) of every heat wave was mapped onto a circle. Every doy was expressed
by two values:

cos(doy) = cos(
2doy ⇤ ⇡

365
) (3.3)

sin(doy) = sin(
doy

365 ⇤ 2⇡ ) (3.4)

With this transformation it was achieved that the first and the last day of the
year are direct neighbors and are therefore considered similar in the clustering.
K-means clustering was performed with cos(doy) and sin(doy) as features. K
was set to four, as the four seasons have the strongest influence on European
weather. The clustering was repeated 100 times and the best result was re-
turned. The four clusters resulting from clustering will hereafter be referred
to as heat wave families.

After the first clustering step, UPGMA clustering was performed on every heat
wave family resulting from the K-means clustering separately. This clustering
step intended to capture the spatial distribution of the heat waves. A distance
matrix with distance measures between every pair of heat waves was created
based on the intersection strength of the heat waves, originally defined for
rainfall clusters by Traxl et al. [Traxl et al., 2016a].

The intersection strength between two heat waves i and j is defined as followed:

ISij =
ICij

min|Lset
i |, |Lset

j | (3.5)

where Lset
i and L

set
j are the sets of the grid cells that are contained in the heat

wave i and j. IC is the intersection cardinality between two heat waves, which
is defined as:

ICij = |Lset
i \ L

set
j | (3.6)

3.2.3 Vegetation Correlation Analysis

To analyze the influence of extreme heat events on vegetation, I calculcated
the spearman’s rank correlation coe�cient between two features of the heat
waves and NDVI monthly anomalies. The features of heat waves are summed
up over one season. A season is defined as the 10th and 90th percentile of
the monthly distribution of heat wave days within a heat wave family. One
feature is the HWMId sum calculated for one grid point and the other feature
is the number of extreme heat days for one grid point. To reduce noise in the
correlation analysis the heat wave clusters were edited. First all ocean grid
points were removed from the clusters. The Copernicus land-sea-mask dataset
was used for this purpose.All grid cells that have a value 0.5 are considered to
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be predominantly ocean covered and are therefore removed from the clusters.
Additionally, to obtain more centered clusters, all grid cells in which five or
fewer heat waves occurred were removed from the cluster. By doing so, I hope
to only analyze correlations of the grid cells that are significantly a↵ected by
heat waves in this cluster. The NDVI anomalies at the end of the respective
season are retrieved and correlated with each of the two heat wave features.
The p-value is calculated and only significant correlation values are used for
analysis. The significance threshold for the correlation coe�cient is set to
↵ = 0.01.
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Chapter 4

Results

4.1 Heat Wave Detection

Using the definition of heat waves described above (3.2.1), the dataset
identified 6,856 heat waves over Europe from 1979 to 2020. Among the
15 most intense heat waves, based on HWMId values, are several well
known and studied heat waves of the past decades. All of the in fig-
ure 4.1 displayed heat waves were extensively studied in research papers
[Russo et al., 2015, Yiou et al., 2020, Mecking et al., 2019, Bonne et al., 2015,
Fischer et al., 2007, Barriopedro et al., 2011]. The 2003 heat wave a↵ected
mainly Western Europe and caused a massive increase in heat related mor-
tality in France [Fischer et al., 2007]. 2010, a record breaking heat wave
in Russia and Eastern Europe caused severe crop failure and forest fires
[Barriopedro et al., 2011, Russo et al., 2015]. The summer heat wave in 2012
over Greenland lead to snow melt in an extend that has never been witnessed
before [Bonne et al., 2015].

15



16 CHAPTER 4. RESULTS

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4.1: Spatial distribution of well known summer heat waves.
Nine summer heat waves that were found in my dataset but also reported in
other literature are shown here. The number of heat wave days represents the
number of extreme heat events at one grid cell: a) 1995 heat wave over Great
Britain, b) 2003 Western European heat wave, c) 2010 Russian heat wave, d)
2012 Greenland heat wave, e) 2014 Scandinavian heat wave, f) 2015 Central
European heat wave g) 2018 Scandinavian heat wave, h) 2019 Western European
heat wave i) 2020 Western European heat wave
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Table 4.1 shows the basic characteristics of the five largest heat waves as
measured by the number of heat events within a heat wave. The number of
heat events is the number of nodes contained in one supernode. This means
that the number of heat events is the sum of all individual heat events on a
grid cell and day level that belong to one heat wave. Three of the five heat
waves are also amongst the well known heat waves with the highest HWMId
values depicted in figure 4.1. However, the dataset reveals other large heat
waves that have not yet been in the focus of attention, such as the winter heat
wave in 2020, which lasted 53 days and covered all of mainland Europe, but
especially Eastern Europe.

Number Start Time End Time Number of Heat Events Timespan
1 28.06.2003 03.10.2003 1,362,710 98 days
2 03.04.2018 30.06.2018 870,226 89 days
2 16.04.1995 26.08.1995 785,314 133 days
3 17.05.2014 19.08.2014 764,550 95 days
4 22.07.2010 21.10.2010 734,818 92 days
5 25.01.2020 17.03.2020 721,998 53 days

Table 4.1: Characteristics of the five largest heat waves. The five
largest heat waves detected in the dataset, measured on the number of heat
events belonging to a heat wave are displayed here. The start and end time of
the heat wave as well as the time span are given.

Figure 4.2 shows that the amount of heat waves happening throughout a year
has increased over the years. Most heat waves that do not occur in summer
have a magnitude of zero. As the magnitude of a heat wave is dependent on
the spatial and temporal extend of a heat wave it was to be expected that the
number of heat events belonging to a heat wave and the timespan of a heat
wave slightly correlate with the HWMId. The distribution of heat waves over
a year shows that there are slightly more heat waves in summer than in other
seasons. However, there is a considerable number of heat waves in the other
seasons. From the last column of figure 4.2 it can be seen that the intensity,
timespan and spatial extend of heat waves appear to be increasing over the
years.
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Figure 4.2: General statistics of the detected heat waves from 1979
to 2020. Features of the heat waves (number of heat events within a heat wave
(n nodes), magnitude of a heat wave (HWMId magnitude), timespan of a heat
wave, mean day of year of a heat wave (ytime mean) and year of occurence
of a heat wave (year)) are plotted. The diagonal shows the distribution of
the respective feature and the pairwise relationships between two features are
plotted in the lower and upper triangle matrix.
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4.2 Heat Wave Clustering

4.2.1 K-means Clustering

The heat waves were clustered by their mean day of year with the K-means
clustering algorithm. K was set to four. In figure 4.3 the day of year distribu-
tion of the heat events belonging to the four heat wave families is shown. The
four families represent the four seasons that mainly spelling central European
weather. Family 0 contains winter heat waves and spans from December to
January, family 1 is the summer heat wave family containing the most famous
heat waves and spans from May to August. Family 2 and 3 contain fall and
spring heat waves which span from August to November and from March to
May respectively. The summarized characteristics for the four heat wave fam-
ilies can be found in table 4.2. The spatial distribution of the four heat wave
families is depicted in the appendix in figure A.1.

Attempting to include more features into the K-means clustering in order
to cluster heat waves by seasonality and length or intensity did not change
the results of the clustering. This is due to the fact that the length of the
heat waves is evenly distributed in the di↵erent seasons, which means that in
all seasons there are few very long heat waves and many small heat waves.
Including the magnitude of heat waves (HWMId sum) did not change the
clustering either, since heat waves in winter, spring, and fall are mostly zero
in magnitude.

When looking at the spatial distribution it is interesting to compare family 0
and 1 with each other. Familiy 0, the winter heat wave family, has a slight
northwards tendency and tends to often center over the atlantic. In contrast,
summer heat waves tend to occur over land and leave out the ocean. Also
a southwards tendency in summer can be observed (see figure A.1 in the
Appendix). However, there is no possibility to detect spatial clusters based
solely on K-means clustering, therefore spatial clustering was performed with
UPGMA clustering in a second step.

Family Number of Heat Waves Timespan
0 1513 December to January
1 1932 May to August
2 1708 August to November
3 1703 March to May

Table 4.2: Characteristics of heat wave families. Basic characteristics
of the four heat wave families resulting from K-means clustering of the dataset
from 1979 to 2020. The timespan is given by the months of the 10th and 90th

percentile of the distribution of heat days belonging to one heat wave family.
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Figure 4.3: Day of year distribution of heat wave families. The his-
togram shows the distribution of heat wave days of the whole dataset during
the year. The four colors indicate the four heat wave families after K-means
clustering.

4.2.2 UPGMA Clustering

After K-means clustering every heat wave family was clustered individually
with UPGMA clustering to find meaningful spatial heat wave clusters. The
threshold for the number of UPGMA clusters per heat wave family was chosen
to be ten, based on previous research, in which Europe was divided into six
regions [Zschenderlein et al., 2019, Stefanon et al., 2012]. As the margins of
my dataset were broader, e.g. Greenland, North Africa and the Atlantic ocean
are included in my dataset, I chose to add four additional regions.

Figures 4.4 to figures 4.7 show the spatial distribution of the heat wave clusters
of the four heat wave families. The colors indicate the numbers of heat waves
that occur in a grid cell over the whole time span. Only the clusters that
are relevant for the subsequent vegetation correlation analysis are shown here.
All other clusters that are ocean- or Greenland based can be found in the
appendix in figures A.2 to A.5. Clusters over Greenland, Scandinavia, North
Africa and Central Europe can be found in every heat wave family. Heat wave
clusters over Great Britain, Central/Eastern Europe and Italy are present in
more than one but not all heat wave families. Other heat wave clusters like
the Sardegnan spring cluster or the Icelandic summer cluster are only present
in one heat wave familiy, meaning that this heat wave cluster only exists in
one specific season. A summary of the occurences of heat wave clusters can be
found in table 4.3.
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The heat wave clusters of every family are numbered by size, the smaller the
number, the larger the cluster. It is noticeable that the Scandinavian, the
North African cluster and the Greenland cluster are amongst the largest four
clusters in all heat wave families.

Cluster Name Family 0
(Winter)

Family 1
(Summer)

Family 2
(Fall)

Family 3
(Spring)

Scandinavia Yes Yes Yes Yes
Great Britain No Yes No Yes
Iceland No Yes No No
Eastern Europe Yes No No No
Central/East
Europe

No Yes Yes Yes

Central/West
Europe

Yes No No No

South France No No Yes No
Italy Yes Yes No Yes
Sardegna No No No Yes
Turkey/Middle
East

No No Yes No

North Africa Yes Yes Yes Yes
North Africa
and Spain

Yes Yes Yes Yes

Table 4.3: Summary of UPGMA clustering. The occurences of the dif-
ferent spatial heat wave clusters in the four heat wave families are summarized.
The clusters are named based on their spatial center. Yes means the heat wave
cluster occurs within a heat wave family, No means it does not.
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(a) Cluster 0 (b) Cluster 2

(c) Cluster 4 (d) Cluster 5

(e) Cluster 6 (f) Cluster 8

Figure 4.4: Spatial heat wave clusters of family 0. Spatial distribution
of heat wave clusters of family 0 after UPGMA clustering. The number of heat
waves gives the information on how often a grid cell is a↵ected by di↵erent heat
waves. Only the land clusters that are used for NDVI correlation analysis are
shown here. All other clusters can be found in the Appendix in figure A.2.
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(a) Cluster 0 (b) Cluster 2

(c) Cluster 3 (d) Cluster 4

(e) Cluster 5 (f) Cluster 7

(g) Cluster 9

Figure 4.5: Spatial heat wave clusters of family 1. Spatial distribution
of heat wave clusters of family 1 after UPGMA clustering. The number of heat
waves gives the information on how often a grid cell is a↵ected by di↵erent heat
waves. Only the land clusters that are used for NDVI correlation analysis are
shown here. All other clusters can be found in the Appendix in figure A.3.
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(a) Cluster 0 (b) Cluster 1

(c) Cluster 4 (d) Cluster 6

(e) Cluster 7 (f) Cluster 9

Figure 4.6: Spatial heat wave clusters of family 2. Spatial distribution
of heat wave clusters of family 2 after UPGMA clustering. The number of heat
waves gives the information on how often a grid cell is a↵ected by di↵erent heat
waves. Only the land clusters that are used for NDVI correlation analysis are
shown here. All other clusters can be found in the Appendix in figure A.4.



4.2. HEAT WAVE CLUSTERING 25

(a) Cluster 1 (b) Cluster 3

(c) Cluster 4 (d) Cluster 5

(e) Cluster 7 (f) Cluster 8

(g) Cluster 9

Figure 4.7: Spatial heat wave clusters of family 3. Spatial distribution
of heat wave clusters of family 3 after UPGMA clustering. The number of heat
waves gives the information on how often a grid cell is a↵ected by di↵erent heat
waves. Only the land clusters that are used for NDVI correlation analysis are
shown here. All other clusters can be found in the Appendix in figure A.5.
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4.3 Vegetation Correlation Analysis

4.3.1 Mean Heat Wave Correlation Analysis

The mean of all significant Spearman’s rank correlation coe�cients over all
years for each cluster from each heat wave familiy was calculated. Only mean
correlations that were calculated from 30 or more individual correlation coef-
ficients were considered in the analysis.

In heat wave family 1, which is the summer heat wave family, cluster 2 and 3
show significant correlations with NDVI data. However, this mean correlation
is fairly weak. Compared to cluster 2, cluster 3 shows a higher positive mean
correlation coe�cient for the heat wave magnitude correlation (see table 4.4).
Positive correlation in this context means that higher heat wave magnitude
correlates with higher NDVI values, indicating greener vegetation. Negative
correlation, as can be seen for cluster 1 in heat wave family 2, indicates that
the more number of heat wave events at one grid cell occured the lower the
NDVI values (see table 4.5). Both clusters with higher correlation coe�cient
values (cluster 3 from family 1 and cluster 1 from family 2) are clusters located
over North Africa.

Cluster NHWE Mean Correlation HWMId Mean Correlation
2 - -0.02
3 0.02 0.12

Table 4.4: Spearman’s rank correlation coe�cients of heat wave fam-
ily 1. Mean spearman’s rank correlation coe�cient over all years for heat wave
family 1. The mean is calculated from significant correlation coe�cients of one
cluster. Only clusters that have at least 30 significant correlation coe�cients are
shown here.Correlations between the features number of heat wave events per
heat wave (NHWE) and the magnitude of a heat wave (HWMId) are calculated.

Cluster NHWE Mean Correlation HWMId Mean Correlation
1 -0.1 -

Table 4.5: Spearman’s rank correlation coe�cients of heat wave fam-
ily 2. Mean spearman’s rank correlation coe�cient over all years for the clusters
of heat wave family 2. The mean is calculated from significant correlation coef-
ficients of one cluster. Only clusters that have at least 30 significant correlation
coe�cients are shown here. Correlations between the features number of heat
wave events per heat wave (NHWE) and the magnitude of a heat wave (HWMId)
are calculated.

To answer the question whether the correlation between NDVI and heat wave
measures within the di↵erent clusters changes over time, the time series pro-
gression of the correlation coe�cient values together with a linear regression
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line were plotted. Using the Mann-Kendall trend test I tested the significance
of the slope of the regression line. The slope of the regression line was not
significant for any of the correlation coe�cient time series and is therefore not
shown here.

4.3.2 Individual Heat Wave Correlation Analysis

In this section the individual correlation coe�cient values of heat waves from
all families with NDVI values are analyzed. Two di↵erent approaches were
chosen to analyze NDVI and heat wave correlation more individually. First
the dataset was split into three parts, to assess whether the correlation of
NDVI values and heat wave features changes over time. For this I divided
the dataset into three parts of ten to eleven years each (1981-1992, 1993-2003,
2004-2015) and calculated significant correlation coe�cients. Boxplots of the
correlation coe�cient distributions for all three datasets were plotted and can
be seen in figure 4.9 and figure 4.8. In heat wave family 1 an increasing mean
correlation coe�cient can be observed for correlation of NDVI and heat wave
events (see figure 4.8b). For all other correlations there is no trend observable.
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(a) (b)

(c) (d)

Figure 4.8: Boxpots of correlation coe�cients (NHWE). Comparison
of correlation coe�cient value distributions of number of heat wave events cor-
relation for: a) Family 0 (winter), b) Family 1 (summer), c) Family 2 (fall), d)
Family 3 (spring). The dataset is split into three parts to compare the develop-
ment of the correlation coe�cients over time.
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(a) (b)

(c)

Figure 4.9: Boxpots of correlation coe�cients (HWMId). Comparison
of correlation coe�cient value distributions of HWMId correlation for: a) Family
1 (summer), b) Family 2 (fall), c) Family 3 (spring). The dataset is split into
three parts to compare the development of the correlation coe�cients over time.

In a second approach the heat waves for the strongest correlating years and
clusters were plotted individually. In family 0 and 3 (winter and spring) no
high correlations between NDVI and HWMId could be found. The highest
individual correlation found over all families is a winter heat wave cluster over
Greenland in 2010 (see figure 4.10a). Across all families, it is noticeable that,
with one exception, all highest correlating heat waves are either located in the
south (North Africa, Spain) or in Scandinavia/Greenland. Independent of the
family, correlation coe�cients between heat wave features and NDVI values
over Scandinavia are positive. In spring, the highest correlation coe�cients
are all negative (see figure 4.13) as well as the correlation coe�cients for the
southern heat waves in fall, as can be seen in figure 4.12.
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(a) (b)

Figure 4.10: Highest individual correlating heat waves of family 0.
Highest correlating heat waves of family 0: a) 2010, heat wave cluster 0, b)
2007, heat wave cluster 5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Highest individual correlating heat waves of family 1.
Highest correlating heat waves of family 1: a) 2008, heat wave cluster 2 b) 1996,
heat wave cluster 5, c) 1982, heat wave cluster 5 , d) 2001, heat wave cluster 3,
e) 1983, heat wave cluster 2, f) 1998, heat wave cluster 3.
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(a) (b)

(c)

Figure 4.12: Highest individual correlating heat waves of family 2.
The spatial distributions of the highest correlating heat waves of family 2 are
shown: a) 1996, heat wave cluster 1, b) 2002, heat wave cluster 0, c) 2005, heat
wave cluster 6.

(a) (b)

Figure 4.13: Highest individual correlating heat waves of family
3.Highest correlating heat waves of family 3: a) 1991, heat wave cluster 1,
b) 2010, heat wave cluster 7.



Chapter 5

Discussion and Outlook

5.1 Definition and Identification of Heat
Waves

In this work, I have developed a new approach to define and identify heat
waves as phenomena that have spatial extents, rather than considering heat
events only at the grid cell level. With this approach, I also do not rely on
predefined fixed boundaries of regions, which makes spatio-temporal clustering
of heat waves impossible. By detecting days of extreme heat with a quantile
based daily and grid cell dependent threshold, I was able to detect heat waves
in cold climates and heat waves throughout the whole year. Even though the
distribution of the heat waves mean day of year peaks in summer, there are
significant numbers of winter, spring and fall heat waves identified within the
dataset (see figure 4.2). Amongst the 6,856 detected heat waves between 1979
and 2020 in Europe are all of the famous summer heat waves that were exam-
ined extensively in prior research. This shows that my approach to define and
detect heat waves works. In addition to the well-known summer heat waves,
my dataset revealed several other heat waves that have not been reported in
literature. Among the five largest heat waves, in terms of spatial extend, there
is one winter heat wave in 2020 that lasted from January to March (see table
4.1). This winter heat wave may not have been as severe when only consider-
ing heat-related deaths, wildfires, or crop failures, but these no less severe heat
waves have other impacts that should not be discounted. Unusually warm tem-
peratures in winter followed by colder temperatures cause damage to flora and
fauna, as the growing season of plants starts too early and is then interrupted
by another cold spell. Additionally winter and spring heat waves can cause
ice sheet melting over Greenland. For future research it would be important
to detect these heat waves and assess their impact on climate, ecosystems as
well.

A striking di↵erence between my approach of defining heat waves and previous

33
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definitions is that the heat waves detected here are all significantly longer than
the same heat waves reported in other literature. It is likely that a heat wave in
my definition is seen as two or more individual heat waves in other definitions.

The HWIMd defined by Russo et al. is based on a grid cell definition of a
heat wave as well. Therefore it might have to be adapted in order to fit to
my definition of heat waves. A weakness of the HWMId measure in general
is that, winter and spring heat waves are rarely warm enough on an absolute
scale to have a magnitude > 0. In my opinion, this undermines their severity
and impact at di↵erent scales.

5.2 Spatio-Temporal Heat Wave Clusters

K-means clustering revealed the dependence of heat waves over Europe on the
four seasons that mainly shape and influence European weather. The heat
waves were divided into a winter, spring, summer and fall familiy. I tried to
incorporate other attributes of heat waves as features into the K-means clus-
tering in order to improve the clustering results. However, neither HWMId
magnitude, nor timespan of the heat wave changed the outcome of the clus-
tering in any way, implying that the mean day of year is the only important
feature causing the variance in the data. Figure 4.2 shows that, with a few
exceptions, the distribution of the timespan of the heat waves does not di↵er
between the seasons. The HWMId is zero for most heat waves outside of sum-
mer, therefore this feature does not help to improve the clustering either. The
number of clusters for UPGMA clustering was set to ten for every family. In
previous studies Europe was divided into six regions, but since as my bound-
aries are broader and I include northern Africa and Greenland as well as the
Atlantic, I decided to add four additional regions [Zschenderlein et al., 2019].

Spatial heat wave clusters over Scandinavia and the Iberian region
(North/West Africa and Spain) were found. in all seasons Those clusters also
always belong to the largest clusters, meaning they contain many heat waves.
These findings fit to the results of Stefanon et al., as they identified the Iberian
and Scandinavian heat wave clusters to be the most stable clusters in summer
with a di↵erent clustering approach [Stefanon et al., 2012].

In my approach of spatial clustering, I found it di�cult to define clear and
stable margins between western, central and eastern Europe. A clear eastern
European heat wave cluster can only be found in family 0, all other families,
however contain a central/eastern European cluster. Nicely spatially separated
heat wave clusters are the Italy clusters in winter spring and summer, the
Sardegna cluster in spring and the Iceland cluster in Summer. The icelandic
summer heat wave cluster is surprisingly large with 50 heat waves belonging
to it. However, there is little to no prior research found on heat waves over
Iceland and their impacts.
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5.3 Influence of Heat Waves on Vegetation

Correlation analysis of NDVI data and heat wave attributes was used to evalu-
ate the impact of heat waves on vegetation.To find di↵erences between di↵erent
spatio-temporal heat wave clusters, I assessed the di↵erent clusters of the fami-
lies individually. The mean correlation coe�cients of the clusters showed weak
correlations, as the correlation coe�cient values were close to zero. However
seen in relation to the other correlation coe�cient values, the highest mean
correlation coe�cient values were found for the North Africa clusters from
family 1 and 2. The positive correlation between HWMId and NDVI values
in summer suggests a beneficial e↵ect of heat waves with high magnitude on
vegetation greenness. This stands in contrast to other research, which sug-
gests, that in regions with water scarcity and in general in summer, vegetation
su↵ers from extreme heat and therefore, a negative correlation with NDVI
values can be observed [Baumbach et al., 2017]. It is nevertheless noticeable,
that most prior research did not specifically assess the influence of heat waves
on vegetation in North Africa. In family 2 the North Africa cluster shows a
weak negative correlation with the number of heat wave days. In fall, espe-
cially after hot summers with precipitation deficits, plants have used up their
reserves they have had for surviving the summer and might be therefore more
susceptible to heat waves.

The individual correlation analysis reveals that positive correlation should not
autmatically be interpreted as something good. The highest correlation coef-
ficient value for a single year and cluster was found for the 2010 winter heat
waves over Greenland. Here the positive correlation however can be explained
by extensive ice sheet melting in winter causing positive NDVI anomalies.
The melting record over Greenland in 2010 has been analyzed in literature
before [Tedesco et al., 2011]. Heat waves over colder climates like Scandinavia
seem to have a positive e↵ect on the greenness of vegetation. All individual
correlation coe�cients of Scandinavian clusters were positive. This suggests
that the type of vegetation in Scandinavia, which is mostly coniferous and
mixed forests, is less sucseptible to extreme heat than other landcover types
[© European Union, 2022]. Also, sunlight is probably a limiting factor in
this region rather than water, therefore more warm and clear sky weather
conditions, which are often associated for summer heat waves, might be ben-
eficial for plant growth. Similar results were reported by Baumbach et al.
[Baumbach et al., 2017]. All highest individual correlation coe�cient values
in family 3, which is the spring heat wave family, are negative, this does not
match prior research where high temperature extremes in spring were found to
be beneficial for most vegetation types in Europe and resulted in high NDVI
values [Baumbach et al., 2017]. However, the NDVI anomalies that are cor-
related with the heat wave measures are only a momentary picture of the
vegetation greenness at the end of the season.
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For summer heat waves a positive trend of the mean correlation coe�cient of
NDVI values and number of heat wave days can be observed 4.8b. Between
1981 and 2015 the greening e↵ect of heat wave days on vegetation gets stronger.
When taking into account that climate change is causing heat waves to be more
extreme and frequent in the 21st century it seems like vegetation is currently
still benefiting from the more frequent heat events. However, as mentioned
above, one can not automatically conclude that greening of vegetation is a
positive e↵ect. This depends on the region under consideration. All other
families do not show a trend of the correlation coe�cients over the years. The
e↵ect of heat waves on vegetation in all other seasons than summer does not
seem to change. However, there are some very extremely positively correlated
data points in the 0 family from 2005 to 2015, suggesting that the correlation
of individual events becomes more extreme in winter, but that most correlation
values remain the same (see figure 4.8a).

5.4 Outlook

The issue of extreme heat events will become even more important in the
future, because even in a world with a warming of only 1.5 degrees celsius, the
number and magnitude of heat waves will increase. Therefore, it is of great
interest to be able to predict heat waves in advance and to better understand
their impacts at di↵erent scales. The current definition of the HWMId does
not quite fit the definition of heat waves that I have proposed in this paper.
Therefore, it would be beneficial to adapt the HWMId definition to apply it
to my heat wave definition. For clustering heat waves, it would be interesting
to develop an approach to cluster heat waves spatially and temporally in one
step and see if similar results can be obtained. In order to better analyse the
impact of heat waves on vegetation, it could be beneficial to include other
variables such as precipitation anomalies, land cover data and drought indices
in the analysis. This would allow more concrete statements to be made about
the influence of heat waves on vegetation. It would also be interesting to
investigate the influence of heat waves in other seasons on NDVI values. This
could lead to insights into whether there are critical development phases for
plants in which extreme heat causes long-term e↵ects.
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Further Tables and Figures

Figure A.1: Spatial distribution of the four heat wave families after
K-means clustering. The spatial distribution of the four heat wave families
is shown. The number of heat waves gives the information on how often a grid
cell is a↵ected by di↵erent heat waves.
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(a) Cluster 1 (b) Cluster 3

(c) Cluster 7 (d) Cluster 9

Figure A.2: Ocean and Greenland clusters of heat wave family 0 after
UPGMA clustering. The spatial distribution of all ocean and land clusters
that are not included in the NDVI analysis of heat wave family 0 is shown. The
number of heat waves gives the information on how often a grid cell is a↵ected
by di↵erent heat waves.
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(a) Cluster 1 (b) Cluster 6

(c) Cluster 8

Figure A.3: Ocean and Greenland clusters of heat wave family 1 after
UPGMA clustering. The spatial distribution of all ocean and land clusters
that are not included in the NDVI analysis of heat wave family 1 is shown. The
number of heat waves gives the information on how often a grid cell is a↵ected
by di↵erent heat waves.
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(a) Cluster 2 (b) Cluster 3

(c) Cluster 5 (d) Cluster 8

Figure A.4: Ocean and Greenland clusters of heat wave family 2 after
UPGMA clustering. The spatial distribution of all ocean and land clusters
that are not included in the NDVI analysis of heat wave family 2 is shown. The
number of heat waves gives the information on how often a grid cell is a↵ected
by di↵erent heat waves.
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(a) Cluster 0 (b) Cluster 2

(c) Cluster 6

Figure A.5: Ocean and Greenland clusters of heat wave family 3 after
UPGMA clustering. The spatial distribution of all ocean and land clusters
that are not included in the NDVI analysis of heat wave family 3 is shown. The
number of heat waves gives the information on how often a grid cell is a↵ected
by di↵erent heat waves.
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Jézéquel, A., Naveau, P., Ribes, A., Robin, Y., Thao, S., van Oldenborgh,
G. J., and Vrac, M. (2020). Analyses of the northern European summer heat-
wave of 2018. Bulletin of the American Meteorological Society, 101(1):S35–
S40.

[Zschenderlein et al., 2019] Zschenderlein, P., Fink, A. H., Pfahl, S., and
Wernli, H. (2019). Processes determining heat waves across di↵erent Eu-
ropean climates. Quarterly Journal of the Royal Meteorological Society,
145(724):2973–2989.

[© European Union, 2022] © European Union, C. L. M. S. (2022). European
environment agency (eea).



48 BIBLIOGRAPHY
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Studiengang als Prüfungsleistung vorgelegt.

Ort, Datum Unterschrift

Julia Hellmig
Tübingen, 13.06.2022


	List of Figures
	List of Tables
	Introduction
	Climatic and Computational Background 
	Climatic Background
	Heat Wave Definition and Measurements
	Physical Causes of Heat Waves in Europe
	Heat Waves and Vegetation

	Computational Background
	Deep Graphs Framework
	K-means Clustering
	UPGMA Clustering
	Spearman's Rank Correlation Coefficient
	Mann-Kendall Trend Test


	Data and Methods
	Data
	Temperature Data
	Normalized Difference Vegetation Index (NDVI) Data

	Methods
	Definition of Heat Waves
	Spatial and Temporal Clustering of Heatwaves
	Vegetation Correlation Analysis


	Results
	Heat Wave Detection
	Heat Wave Clustering
	K-means Clustering
	UPGMA Clustering

	Vegetation Correlation Analysis
	Mean Heat Wave Correlation Analysis
	Individual Heat Wave Correlation Analysis


	Discussion and Outlook
	Definition and Identification of Heat Waves
	Spatio-Temporal Heat Wave Clusters
	Influence of Heat Waves on Vegetation
	Outlook

	Further Tables and Figures
	Bibliography

