How to write a scientific paper

Bedartha Goswami

7 July 2021

Section 1

Structure & components

Structure & components Language and style

Language and style
The process of writing
Miscellaneous issues

Overview

- Title
- Abstract

- Title
- Abstract
- Main text (introduction, methods, results, ...)

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest
- References

- Title
- Abstract
- Main text (introduction, methods, results, ...)
- Figures
- Data and code availability
- Acknowledgments
- Conflicts of interest
- References
- Supplementary

Title

• Short (max 15 words)

- Short (max 15 words)
- Informative

- Short (max 15 words)
- Informative
- Preferably no verbs, but only simple present tense if at all

- Short (max 15 words)
- Informative
- Preferably no verbs, but only simple present tense if at all
- Avoid abbreviations

- Short (max 15 words)
- Informative
- Preferably no verbs, but only simple present tense if at all
- Avoid abbreviations
- Avoid jokes (search engines might not get it)

Abstract

• Summarise the paper briefly

- Summarise the paper briefly
- For a more general audience

- Summarise the paper briefly
- For a more general audience
- Structure:

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. "Here, we consider . . . "

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. "Here, we consider . . . "
 - \bullet 1-2 sentences describing what you find, e.g., "We find that \dots ", "Our results indicate that \dots "

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. "Here, we consider . . . "
 - 1-2 sentences describing what you find, e.g., "We find that ...", "Our results indicate that ..."
 - 1-2 sentences putting the results in context

- Summarise the paper briefly
- For a more general audience
- Structure:
 - 1-2 sentences provide background and motivation / rationale
 - 1-2 sentences describing what you do, e.g. "Here, we consider . . . "
 - 1-2 sentences describing what you find, e.g., "We find that ...", "Our results indicate that ..."
 - 1-2 sentences putting the results in context
- https://www.nature.com/documents/nature-summary-paragraph.pdf

Main text

Introduction

- Introduction
 - Background

- Introduction
 - Background
 - Rationale

- Introduction
 - Background
 - Rationale
 - Related work

- Introduction
 - Background
 - Rationale
 - Related work
 - Contribution

Structure & components Language and style

Language and style
The process of writing
Miscellaneous issues

Main text

Methods

- Methods
 - Data used

- Methods
 - Data used
 - Methods used

- Methods
 - Data used
 - Methods used
 - Setup of experiments

Main text

Results and discussion

- Results and discussion
 - Main figures of the paper

- Results and discussion
 - Main figures of the paper
 - Tables

- Results and discussion
 - Main figures of the paper
 - Tables
 - Brief (non-judgemental) interpretation of the figures

Structure & components
Language and style
The process of writing
Miscellaneous issues

Main text

Conclusion

- Conclusion
 - Summarise the main points

- Conclusion
 - Summarise the main points
 - \bullet Repeat what you did / set out to do

- Conclusion
 - Summarise the main points
 - Repeat what you did / set out to do
 - Repeat what you achieved

- Conclusion
 - Summarise the main points
 - Repeat what you did / set out to do
 - Repeat what you achieved
 - Provide a brief context of how your results will impact the field

Use a plotting software that generates vector graphics (SVG, PDF)

- Use a plotting software that generates vector graphics (SVG, PDF)
- Avoid PNGs and JPEGs as far as possible

- Use a plotting software that generates vector graphics (SVG, PDF)
- Avoid PNGs and JPEGs as far as possible
- Ensure the smallest font size in the figure is no less than 11 pts

- Use a plotting software that generates vector graphics (SVG, PDF)
- Avoid PNGs and JPEGs as far as possible
- Ensure the smallest font size in the figure is no less than 11 pts
- Find out how big should the figure be (in/mm) and design accordingly

Structure & components
Language and style
The process of writing
Miscellaneous issues

Figures

• Use colorblind friendly color-schemes

- Use colorblind friendly color-schemes
 - Use a color blindness simulator

- Use colorblind friendly color-schemes
 - Use a color blindness simulator
 - https://colororacle.org/

Structure & components
Language and style
The process of writing
Miscellaneous issues

Figures

Use color maps appropriately

- Use color maps appropriately
 - sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)

- Use color maps appropriately
 - sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)
 - divergent color maps for data which have both positive and negative values with the zero in between (e.g., precipitation anomalies)

- Use color maps appropriately
 - sequential color maps for data which are all non-negative or all non-positive (e.g., precipitation)
 - divergent color maps for data which have both positive and negative values with the zero in between (e.g., precipitation anomalies)
 - https://matplotlib.org/2.0.2/examples/color/colormaps_reference.html

Structure & components
Language and style
The process of writing
Miscellaneous issues

Figures

• Use line plots and bar plots appropriately

- Use line plots and bar plots appropriately
 - line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature

- Use line plots and bar plots appropriately
 - line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature
 - bar plots for discontinuous data, e.g., monthly averages or sums, categorical data (e.g., country-wise averages or sums)

- Use line plots and bar plots appropriately
 - line plots for continuous data, i.e., if it is meaningful to think of data in between two plotted data points, then a line plot is okay, e.g., hourly or daily temperature
 - bar plots for discontinuous data, e.g., monthly averages or sums, categorical data (e.g., country-wise averages or sums)
- Always provide axis labels (even for the color bars)

Structure & components
Language and style
The process of writing
Miscellaneous issues

Figures

• Use legends appropriately

- Use legends appropriately
- Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption

- Use legends appropriately
- Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption
- If you have space, then use the figure captions to quickly the results in the context of the article's narrative, e.g.

- Use legends appropriately
- Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption
- If you have space, then use the figure captions to quickly the results in the context of the article's narrative, e.g.
 - "(A) shows the Niño 3.4 SST anomalies where the El Niños and La Niñas are clearly visible as large excursions from the normal SST climatology (the zero line)", as opposed to

- Use legends appropriately
- Figure legends (color keys, etc) should be such that the figure is understandable without reading the caption
- If you have space, then use the figure captions to quickly the results in the context of the article's narrative, e.g.
 - "(A) shows the Niño 3.4 SST anomalies where the El Niños and La Niñas are clearly visible as large excursions from the normal SST climatology (the zero line)", as opposed to
 - "(A) shows the SSTA anomalies in the Niño 3.4 region".

Data and code availability

• Important for reproducibility of research

Data and code availability

- Important for reproducibility of research
- Mention data sources

Data and code availability

- Important for reproducibility of research
- Mention data sources
- Provide code sources (Github repo, etc.)

Structure & components
Language and style
The process of writing
Miscellaneous issues

Acknowledgments

Mention funding sources

Acknowledgments

- Mention funding sources
- Sometimes people with whom you had informal but helpful discussions about the paper

Conflicts of interest

• E.g., if you are working for Shell and writing about climate change

Structure & components
Language and style
The process of writing
Miscellaneous issues

References

• Use a reference manager

References

- Use a reference manager
- Make sure you cite classical papers as well

References

- Use a reference manager
- Make sure you cite classical papers as well
- Make sure you cite the most recent papers as well

References

- Use a reference manager
- Make sure you cite classical papers as well
- Make sure you cite the most recent papers as well
- Don't use "filler" references

References

- Use a reference manager
- Make sure you cite classical papers as well
- Make sure you cite the most recent papers as well
- Don't use "filler" references
- $\bullet \ \, \mathsf{Keep to a minimum (length != intelligence)} \\$

Typically not essential to the main narrative but helpful

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks
- More background about the data and methods

- Typically not essential to the main narrative but helpful
- Results from additional experimental setups
- Sensitivity / cross-validation / robustness checks
- More background about the data and methods
- Details about algorithmic and implementation aspects of your ideas

Section 2

Language and style

Overview

- Why is language important
- Tenses

- Why is language important
- Tenses
- Grammar

- Why is language important
- Tenses
- Grammar
- Sentences

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs
- Common errors

- Why is language important
- Tenses
- Grammar
- Sentences
- Paragraphs
- Common errors
- Source:

 $https://www.gfdl.noaa.gov/wp-content/uploads/2018/08/Elements_of_Style.pdf$

Why is language important

• Poor language can delay or even block publication

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections
 - Authors' responsibility to convey ideas

- Poor language can delay or even block publication
 - Reviewers need to understand your message with minimal effort
 - Reviewers need to understand your idea to be able to judge them
- Reviewing process does not involve language corrections
 - Authors' responsibility to convey ideas
 - Not the reviewer's responsibility to read and re-read your draft

Tenses

• Preferable using present tense:

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"
 - Do: "We take SST data from ERA5"

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"
 - Do: "We take SST data from ERA5"
- If you have to use past tense, restrict it to describing experimental conditions:

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"
 - Do: "We take SST data from ERA5"
- If you have to use past tense, restrict it to describing experimental conditions:
 - "The simulations were run on a computing cluster with 120 nodes"

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"
 - Do: "We take SST data from ERA5"
- If you have to use past tense, restrict it to describing experimental conditions:
 - "The simulations were run on a computing cluster with 120 nodes"
 - "The proposed method was applied to all three data sets"

- Preferable using present tense:
 - Don't: "We had taken SST data from ERA5"
 - Do: "We take SST data from ERA5"
- If you have to use past tense, restrict it to describing experimental conditions:
 - "The simulations were run on a computing cluster with 120 nodes"
 - "The proposed method was applied to all three data sets"
- Avoid shifting tenses in a basic unit of text: paragraph / section

Grammar

Prefer active voice

Grammar

- Prefer active voice
 - Don't: "It was found that ..."

Grammar

```
    Prefer active voice
```

```
• Don't: "It was found that ..."
```

• Do: "We find that ..."

Grammar

• Avoid the following:

Grammar

- Avoid the following:
 - Contractions: Use "do not" instead of "don't", "is not" instead of "isn't", ...

Grammar

- Avoid the following:
 - Contractions: Use "do not" instead of "don't", "is not" instead of "isn't", ...
 - **Abbreviations**: Except common abbreviations, any new abbreviations (if absolutely necessary) should be defined on first usage

Grammar

• Eliminate redundant phrases

Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since

Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - $\bullet \ \ immediately \ apparent \ -> \ apparent \\$

Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - immediately apparent -> apparent
 - in the case that -> in case

Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - immediately apparent -> apparent
 - in the case that -> in case
 - and also -> and

Grammar

- Eliminate redundant phrases
 - due to the fact that -> because or since
 - immediately apparent -> apparent
 - in the case that -> in case
 - and also -> and
 - in order to determine -> to determine

Sentences

• Short, sharp sentences

- Short, sharp sentences
 - Avoid long, compound statements

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - avoid multiple statements in one sentence

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - avoid multiple statements in one sentence
- Keep subject and verb close together

- Short, sharp sentences
 - Avoid long, compound statements
- One idea per sentence
 - avoid multiple statements in one sentence
- Keep subject and verb close together
 - "An El Niño event, which is defined as an anomalous positive excursion of a three
 month running mean SST anomaly over the equatorial Pacific, typically causes a
 failure of the Indian monsoon in the following year."

Paragraphs

• Basic unit of conveying a complex idea

Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph

Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph
- Maintain the same tense all throughout

Paragraphs

- Basic unit of conveying a complex idea
- Prefer to have one idea / topic per paragraph
- Maintain the same tense all throughout
- Arrange paragraphs logically to create the 'flow' of your text

Common errors

• Avoid using "This" without qualifying it first

- Avoid using "This" without qualifying it first
 - **Don't**: "We found this to be the most important facet of the ocean's dynamical response."

- Avoid using "This" without qualifying it first
 - **Don't**: "We found this to be the most important facet of the ocean's dynamical response."
 - **Do**: "We found this feature of the thermocline to be the most important facet of the ocean's dynamical response"

Common errors

Avoid too many successive prepositional phrases

- Avoid too many successive prepositional phrases
 - **Don't**: "We ran a model simulation of the ocean for research into the evolution of the thermocline"

- Avoid too many successive prepositional phrases
 - **Don't**: "We ran a model simulation of the ocean for research into the evolution of the thermocline"
 - **Do**: "We ran an ocean model simulation to conduct research into thermocline evolution"

Common errors

Avoid subjective words / phrases that will get outdated over time

- Avoid subjective words / phrases that will get outdated over time
 - "high resolution"

- Avoid subjective words / phrases that will get outdated over time
 - "high resolution"
 - "new result"

- Avoid subjective words / phrases that will get outdated over time
 - "high resolution"
 - "new result"
 - "latest finding"

Common errors

• Avoid subjective or judgemental adjectives

- Avoid subjective or judgemental adjectives
 - "simple model"

- Avoid subjective or judgemental adjectives
 - "simple model"
 - "crucial result"

- Avoid subjective or judgemental adjectives
 - "simple model"
 - "crucial result"
 - "fundamental approach"

Section 3

The process of writing

Overview

• What are you writing? Who are you writing for?

Overview

- What are you writing? Who are you writing for?
- Find a narrative

Overview

- What are you writing? Who are you writing for?
- Find a narrative
- Writing

Overview

- What are you writing? Who are you writing for?
- Find a narrative
- Writing
- Editing and review

Know your demographic

- Know your demographic
 - general / technical audience

- Know your demographic
 - general / technical audience
- Research article or review or tutorial

- Know your demographic
 - general / technical audience
- Research article or review or tutorial
- Graphical abstract or schematic explaining workflow / core concepts

Find a narrative

• My workflow:

- My workflow:
 - First prepare the main result figures

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description
- In general, ask these questions:

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description
- In general, ask these questions:
 - What is interesting about your work?

- My workflow:
 - First prepare the main result figures
 - Core narrative is, at this stage, simply figure description
- In general, ask these questions:
 - What is interesting about your work?
 - Interesting for whom (e.g., for climate scientists or computer scientists)?

Writing

• Write first, edit later

- Write first, edit later
- I like to start with the methods and end with the abstract:

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then
 - Results and discussion, then

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then
 - Results and discussion, then
 - Conclusion, then

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then
 - Results and discussion, then
 - Conclusion, then
 - Introduction, then

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then
 - Results and discussion, then
 - Conclusion, then
 - Introduction, then
 - Abstract

- Write first, edit later
- I like to start with the methods and end with the abstract:
 - Methods, then
 - Results and discussion, then
 - Conclusion, then
 - Introduction, then
 - Abstract
- Use a spell check simultaneously

• Write a first draft, take a step back (a day or two), then edit

- Write a first draft, take a step back (a day or two), then edit
- \bullet Ask someone from a different group / field to review as well

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations
 - Results don't match the claims

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations
 - Results don't match the claims
 - Research questions / hypothesis are not clearly laid out

- Write a first draft, take a step back (a day or two), then edit
- Ask someone from a different group / field to review as well
- What to look for:
 - Unfounded generalisations
 - Results don't match the claims
 - Research questions / hypothesis are not clearly laid out
 - Figures are not easily understandable

Section 4

Miscellaneous issues

Overview

Overview

- Authorship
- Selecting a journal

Authorship

• Different disciplines have different criteria

- Different disciplines have different criteria
 - Math: Mostly single authors

- Different disciplines have different criteria
 - Math: Mostly single authors
 - Physics: Around 3-6 people

- Different disciplines have different criteria
 - Math: Mostly single authors
 - Physics: Around 3-6 people
 - Geoscience: Large teams of 10-15 people

- Different disciplines have different criteria
 - Math: Mostly single authors
 - Physics: Around 3-6 people
 - Geoscience: Large teams of 10-15 people
 - High energy physics: International conglomerates (100s of people!)

Authorship

• Typically, an author has done one or more of the following

- Typically, an author has **done** one or more of the following
 - Conceptualised the study

- Typically, an author has done one or more of the following
 - Conceptualised the study
 - Written the code

- Typically, an author has done one or more of the following
 - Conceptualised the study
 - Written the code
 - Prepared the figures

- Typically, an author has done one or more of the following
 - Conceptualised the study
 - Written the code
 - Prepared the figures
 - Written or edited the manuscript

- Typically, an author has **done** one or more of the following
 - Conceptualised the study
 - Written the code
 - Prepared the figures
 - Written or edited the manuscript
 - Carried out related fieldwork or experiments

Authorship

• Typically, the following does not make you an author

- Typically, the following does not make you an author
 - Providing feedback after a talk or in an isolated discussion

- Typically, the following does not make you an author
 - Providing feedback after a talk or in an isolated discussion
 - Providing previously published data set

- Typically, the following does not make you an author
 - Providing feedback after a talk or in an isolated discussion
 - Providing previously published data set
 - Providing previously published code

- Typically, the following does not make you an author
 - Providing feedback after a talk or in an isolated discussion
 - Providing previously published data set
 - Providing previously published code
 - Reviewing someone else's manuscript

Selecting a journal

• Which discipline would benefit from your work?

Selecting a journal

- Which discipline would benefit from your work?
- Which journals come up more often in your own list of references?

Selecting a journal

- Which discipline would benefit from your work?
- Which journals come up more often in your own list of references?
- Which journals do your peers publish in?

Q & A

• Any questions or comments?